4,926 research outputs found

    Neighbours of Einstein's Equations: Connections and Curvatures

    Full text link
    Once the action for Einstein's equations is rewritten as a functional of an SO(3,C) connection and a conformal factor of the metric, it admits a family of ``neighbours'' having the same number of degrees of freedom and a precisely defined metric tensor. This paper analyzes the relation between the Riemann tensor of that metric and the curvature tensor of the SO(3) connection. The relation is in general very complicated. The Einstein case is distinguished by the fact that two natural SO(3) metrics on the GL(3) fibers coincide. In the general case the theory is bimetric on the fibers.Comment: 16 pages, LaTe

    Degenerate Metric Phase Boundaries

    Full text link
    The structure of boundaries between degenerate and nondegenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such "phase boundaries" in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild, and plane wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.Comment: 16 pages, 2 figures; erratum included in separate file: errors in section 4, degenerate phase boundary is null without imposing field equation

    Degenerate Sectors of the Ashtekar Gravity

    Full text link
    This work completes the task of solving locally the Einstein-Ashtekar equations for degenerate data. The two remaining degenerate sectors of the classical 3+1 dimensional theory are considered. First, with all densitized triad vectors linearly dependent and second, with only two independent ones. It is shown how to solve the Einstein-Ashtekar equations completely by suitable gauge fixing and choice of coordinates. Remarkably, the Hamiltonian weakly Poisson commutes with the conditions defining the sectors. The summary of degenerate solutions is given in the Appendix.Comment: 19 pages, late

    Probability-based comparison of quantum states

    Full text link
    We address the following state comparison problem: is it possible to design an experiment enabling us to unambiguously decide (based on the observed outcome statistics) on the sameness or difference of two unknown state preparations without revealing complete information about the states? We find that the claim "the same" can never be concluded without any doubts unless the information is complete. Moreover, we prove that a universal comparison (that perfectly distinguishes all states) also requires complete information about the states. Nevertheless, for some measurements, the probability distribution of outcomes still allows one to make an unambiguous conclusion regarding the difference between the states even in the case of incomplete information. We analyze an efficiency of such a comparison of qudit states when it is based on the SWAP-measurement. For qubit states, we consider in detail the performance of special families of two-valued measurements enabling us to successfully compare at most half of the pairs of states. Finally, we introduce almost universal comparison measurements which can distinguish almost all non-identical states (up to a set of measure zero). The explicit form of such measurements with two and more outcomes is found in any dimension.Comment: 12 pages, 6 figures, 1 table, some results are extende

    A trick for passing degenerate points in Ashtekar formulation

    Get PDF
    We examine one of the advantages of Ashtekar's formulation of general relativity: a tractability of degenerate points from the point of view of following the dynamics of classical spacetime. Assuming that all dynamical variables are finite, we conclude that an essential trick for such a continuous evolution is in complexifying variables. In order to restrict the complex region locally, we propose some `reality recovering' conditions on spacetime. Using a degenerate solution derived by pull-back technique, and integrating the dynamical equations numerically, we show that this idea works in an actual dynamical problem. We also discuss some features of these applications.Comment: 9 pages by RevTeX or 16 pages by LaTeX, 3 eps figures and epsf-style file are include

    Causal structure and degenerate phase boundaries

    Get PDF
    Timelike and null hypersurfaces in the degenerate space-times in the Ashtekar theory are defined in the light of the degenerate causal structure proposed by Matschull. Using the new definition of null hypersufaces, the conjecture that the "phase boundary" separating the degenerate space-time region from the non-degenerate one in Ashtekar's gravity is always null is proved under certain circumstances.Comment: 13 pages, Revte

    Demographic Effects on the Swedish Pension System

    Get PDF
    The present study describes the effect that different demographic developments will have on the Swedish pension system. Projections of expenditures for old age pensions, survivor pensions, and disability pensions were made for the period 1985-2050 on the basis of future developments of the population and its structure (age, sex, and marital status). Six demographic scenarios were formulated: Benchmark, High Fertility, Low Mortality, West European, National 1, and National 2 scenarios. Together they cover a wide range of demographic developments, not to say all probable developments. A model of the current Swedish pension system is combined with all six demographic scenarios. Projections of expenditures as well as of contributions and benefits in the pension system are made. The pension system will be put under severe strain whatever the demographic development. In all scenarios, expenditures will continue to increase until 2030, in the beginning as a result of the maturing of the system, but after the turn of the century mainly as a result of demographic changes. Expenditures will increase by about 75% in the "most favorable" scenarios (Benchmark/High Fertility, Western European) and by 100% to 130% in the "least favorable" scenarios (Low Mortality, National 1 and 2). After 2030, expenditures decrease in all scenarios except in National 2 where they remain constant. The contribution rates will have to be increased from about 20% in 1985 to between 36% (National 1) and 49.9% (Low Mortality) of the wage sum in 2030. The impact on contributions and benefits of three selected policy measures are studied: a raising of the retirement age by two years, an extension of the number of years on which benefits are based and an increase in labor force. All three measures will ease the pressure on the system but only to some extent. The main conclusion is that there is a need for a fundamental change in the Swedish pension system

    The reality conditions for the new canonical variables of General Relativity

    Get PDF
    We examine the constraints and the reality conditions that have to be imposed in the canonical theory of 4--d gravity formulated in terms of Ashtekar variables. We find that the polynomial reality conditions are consistent with the constraints, and make the theory equivalent to Einstein's, as long as the inverse metric is not degenerate; when it is degenerate, reality conditions cannot be consistently imposed in general, and the theory describes complex general relativity.Comment: 11
    • …
    corecore